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Abstract
We present a complete next-to-leading order (NLO) calculation for the total cross section of

inclusive Higgs pair production via bottom-quark fusion (bb̄ → hh) at the CERN Large Hadron

Collider (LHC) in the Standard Model. The NLO QCD corrections lead to less dependence on

the renormalization scale (µR) and the factorization scale (µF ) than the leading-order (LO) cross

section, and they significantly increase the LO cross section. The rate for inclusive Higgs pair

production is small in the Standard Model, but can be large in models with enhanced couplings of

the b quark to the Higgs bosons.
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I. INTRODUCTION

In the Standard Model (SM), one Higgs doublet is responsible for the electroweak sym-
metry breaking (EWSB) that generates masses for gauge bosons and fermions. A neutral
Higgs boson (h) remains after EWSB, and it is the only SM elementary particle that has
not been observed in high energy experiments. In extensions of the Standard Model, there
can be more Higgs bosons.

One of the most important goals of the Fermilab Tevatron Run II and the CERN Large
Hadron Collider (LHC) is to discover the Higgs bosons or to prove their non-existence. The
present lower bound on the standard Higgs boson mass from direct searches at LEP2 [1, 2]
is Mh > 114 GeV. The electroweak precision measurements set an upper limit of Mh <
166 GeV at 95% confidence level for the Standard Model Higgs boson [3] using the recently
measured top quark mass of mt = 171.4±1.2±1.8 GeV [4]. This limit increases to 199 GeV
when the LEP2 direct search limit is included.

The Fermilab Tevatron and the LHC will play crucial roles in Higgs searches. Once a
candidate Higgs boson is discovered, it will be necessary to determine the Higgs couplings
and spin to see if the Higgs candidate has the properties of the SM Higgs boson. One of the
most difficult properties to measure is the trilinear self coupling of a Higgs boson [5, 6, 7, 8, 9].
The high energy and high luminosity at the LHC might provide opportunities to detect a
pair of Higgs bosons as well as a discovery channel to measure the trilinear Higgs couplings
in the SM and in models with more Higgs bosons. In the Standard Model, gluon fusion
is the dominant process to produce a pair of Higgs bosons via triangle and box diagrams
with internal top quarks and bottom quarks [10, 11, 12, 13]. Bottom quark fusion can also
produce Higgs pairs at a lower rate.

At tree level, the physical production mechanism for a Higgs boson pair in association
with b quarks is gg → bbhh. This process contains a large collinear logarithm from the gluon
splitting into a collinear bb̄ pair, Λ ≡ ln(Mh/mb). These logarithms can be resummed by
using a perturbatively defined b quark parton distribution function (PDF) which is inherently
O(αsΛ) [14, 15, 16, 17]. In this approach, the ordering of perturbation theory is changed to
be an expansion in O(αs) and Λ−1.

When using a scheme with b quark PDFs for Higgs pair production in association with
b quarks, the leading order (LO) process becomes bb → hh, and we compute the NLO cross
section with O(αs) and O(1/Λ) corrections to this process. The subprocess bg → bhh is a
correction of O(1/Λ) to the lowest order process, while gg → bbhh is O(1/Λ2).

The rate for Higgs pair production at the LHC is small in the SM. However, it can become
significant in models in which the Higgs coupling to the bottom quark is enhanced [18]. In
two Higgs doublet models with Model II type of Yukawa interactions (including the minimal
supersymmetric standard model (MSSM)), the ratio of the Higgs vacuum expectation values
(tanβ ≡ v2/v1) is an important parameter. A large value of tanβ greatly enhances the Higgs
coupling with bottom quarks and makes bottom quark fusion become the largest production
mechanism for producing a Higgs boson at the LHC. The D0 experiment has placed limits
on single Higgs production in association with b quarks for large values of tanβ [19].

In this paper, we present the complete next-to-leading order (NLO) calculations to the
production of Higgs pairs via bottom quark fusion in the Standard Model. We compute a
consistent set of O(αs) and O(1/Λ) corrections. In a future paper, we will present results
for double Higgs production at NLO in the MSSM [20].

The theoretical prediction depends on the number of b quarks tagged. Here, we consider
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only inclusive processes in which there are no tagged b quarks. We apply the two cutoff
phase space slicing method [21, 22] to calculate corrections from real gluon emission. Two
arbitrary small parameters are introduced to split the phase space in real gluon emission
into soft, hard/collinear, and hard/non-collinear regions. The production in the hard/non-
collinear region is finite and can be calculated numerically. Divergences are isolated into
soft and hard/collinear regions. The soft (infrared) singularities cancel with the infrared
singularities in the virtual corrections. The collinear singularities are absorbed into the
initial parton distribution functions.

In section II, we compute the leading-order cross section for pp → hh + X via bb̄ →
hh. In section III, we provide a complete next-leading order (NLO) calculation for hh
production. At the parton level, we compute one-loop virtual corrections and real gluon
emission corrections to bb̄ → hh and the O(1/Λ) subleading process, bg → bhh. The
associated production, gg → bb̄hh, is finite and is a subleading correction of O(1/Λ2) to the
inclusive rate for pp → hh + X. We use MadGraph [23] and HELAS [24] to compute its
LO production rate with a finite mass of the bottom quark. Numerical results are given
in Section IV and conclusions are drawn in section V. In addition, there is an appendix to
present formulas for the b quark running mass.

II. LEADING-ORDER CROSS SECTION FOR bb̄ → hh

The leading order (LO) inclusive cross section for pp → hh + X via bb̄ → hh is evaluated
with

σLO =
∫

dx1dx2

[

b(x1)b̄(x2) + b̄(x1)b(x2)
]

σ̂LO(s, t, u)(bb̄ → hh) (1)

where b(x) and b̄(x) are the LO parton distribution functions for bottom quarks in the proton,
σ̂LO(s, t, u) is the parton level cross section for bb̄ → hh and s, t, u are the Mandelstam
variables. Fig. 1 shows the tree level Feynman diagrams for bb̄ → hh.

 b b

h

h

(1)

 b
h

(2)

hh

(3)

 b
h b  b  b h

 b

FIG. 1: The lowest order Feynman diagrams for bb̄ → hh.

We assign momenta to the initial and the final state particles with

b(p1)b̄(p2) → h(p3)h(p4)

and p1 + p2 = p3 + p4. We take the bb̄h and hhh couplings to be −imb

v
Cbh and −i3

M2

h

v
Chhh,

respectively, with v = the Higgs vacuum expectation value ≃ 246 GeV, Cbbh = 1 and
Chhh = 1 in the Standard Model. We evaluate the bottom quark mass in the hbb̄ Yukawa
coupling by using the MS mass, m̄b(µ) (defined in Appendix A), for a two-loop heavy
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quark running mass [25] with mb(pole) = 4.7 GeV and the NLO evolution of the strong
coupling [26].

In addition,the Mandelstam variables are defined as

s = (p1 + p2)
2

t = (p1 − p3)
2

u = (p2 − p3)
2 .

Following the simplified ACOT prescription [27, 28, 29], we take mb = 0 everywhere
except in the Yukawa couplings. Then the tree level amplitudes of the s, t and u channels
are:

M0
s ≡ M̂0

s δji = − 3CbhChhhm̄b(µ)M2
h

v2 (s − M2
h + iMhΓh)

δjiv̄(p2)u(p1)

M0
t ≡ M̂0

t δji =
C2

bhm̄
2
b(µ)

v2t
δjiv̄(p2) p/3u(p1)

M0
u ≡ M̂0

uδji = −C2
bhm̄

2
b(µ)

v2u
δjiv̄(p2) p/3u(p1)

where i and j are color indices for initial b and b̄ quarks. The µ parameter is an arbitrary
mass, which is introduced such that both the renormalized strong coupling and Yukawa
coupling are dimensionless in N dimensions. The corresponding spin- and color-averaged
matrix elements squared including interference terms are

〈|M0
s |2〉 =

3

2

(

m̄2
b(µ)

v2

)

C2
bhC

2
hhh

s

v2

∣

∣

∣

∣

∣

M2
h

s − M2
h + iΓhMh

∣

∣

∣

∣

∣

2

〈|M0
t |2〉 =

1

6

(

m̄4
b(µ)

v4

)

C4
bh

(

u

t
− M4

h

t2

)

〈|M0
u|2〉 =

1

6

(

m̄4
b(µ)

v4

)

C4
bh

(

t

u
− M4

h

u2

)

〈Re(M0
t M̄0

u)〉 = −1

6

(

m̄4
b(µ)

v4

)

C4
bh

(

1 − M4
h

tu

)

,

where Γh is the decay width of the Higgs boson.
Summing the above terms, we obtain the total matrix element squared

〈|M0|2〉 = 〈|M0
s |2〉 + 〈|M0

t |2〉 + 〈|M0
u|2〉 + 2〈Re(M0

t M
0
u)〉

=
1

6

(

m̄2
b(µ)

v2

)

C2
bh



9
s

v2
C2

hhh

∣

∣

∣

∣

∣

M2
h

s − M2
h + iMhΓh

∣

∣

∣

∣

∣

2

+

(

m̄2
b(µ)

v2

)

C2
bh

(

1 − M4
h

ut

)

(u − t)2

ut

]

.

The parton level cross section for inclusive bb̄ → hh production becomes

σ̂LO =
∫

1

2s

1

2
〈|M0|2〉dΦ2(bb̄ → hh) (2)

where dΦ2(bb̄ → hh) denotes the two-body phase space factor and a factor of 1/2 comes
from identical particles in the final state.
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III. NEXT-TO-LEADING ORDER CORRECTIONS FOR bb̄ → hh

To determine the next-to-leading order (NLO) corrections for Higgs boson pair production
in bottom quark fusion, we evaluate the cross section for (a) the leading-order subprocess
(bb̄ → hh), (b) the αs corrections, and (c) the 1/Λ corrections (bg → bhh), where Λ ≡
ln(Mh/mb). The order αs corrections have contributions from one-loop diagrams with virtual
gluons (bb̄ → hh) and tree-level real gluon emission (bb̄ → hhg). The NLO correction
contains both the αs and the 1/Λ corrections.

We write the parton level NLO cross section as

σ̂NLO(x1, x2, µ) = σ̂LO(x1, x2, µ) + δσ̂NLO(x1, x2, µ)

δσ̂NLO(x1, x2, µ) = δσ̂αs
(x1, x2, µ) + δσ̂1/Λ(x1, x2, µ) (3)

where σ̂LO(x1, x2, µ) is the leading order (Born) cross section and δσ̂NLO(x1, x2, µ) is the
next-to-leading order correction to the Born cross section, x1,2 are the momentum fractions
of the partons, x1x2 = ŝ/S, S is the center of mass energy of the hadrons and µ = µR is the
renormalization scale.

The O(αs) correction includes contributions from both virtual and real gluon emission:

δσ̂αs
(x1, x2, µ) = δσ̂v(x1, x2, µ) + δσ̂r(x1, x2, µ) (4)

where δσ̂v(x1, x2, µ) and δσ̂r(x1, x2, µ) represent virtual and real gluon emission NLO cor-
rections to bb̄ → hh.

A. Corrections with virtual gluons

The one-loop diagrams for the O(αs) corrections to bb̄ → hh are shown in Fig. 2. The αs

corrections involving virtual gluons are evaluated as the interferences between Born diagrams
(Fig. 1) and one-loop virtual diagrams (Fig. 2).

|Mv|2 = M0M loop + MloopM 0 = 2Re(MloopM0) .

We evaluate the amplitudes of the one-loop diagrams by applying dimensional regular-
ization in N dimensions with N ≡ 4 − 2ǫ. The virtual diagrams are computed analytically
and all tensor integrals are reduced to linear combinations of one-loop scalar functions. All
amplitudes for the virtual corrections can be reduced to Born amplitudes multiplied by
coefficients Xi. We find,

2Re(MloopM0) = 2CFg2
sRe{

[

Xs|M0
s |2 + Xt|M0

t |2 + Xu|M0
u |2 + (Xt + Xu)Re(M0

t M0
u)
]

} (5)

where CF = 4/3 and

Xs ≡ X9

Xt ≡ X1 + X3 + X5 + X7

Xu ≡ X2 + X4 + X6 + X8
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FIG. 2: One-loop virtual corrections to bb̄ → hh.

The coefficients are,

X1 = −A
(

1

ǫ
+ 1 − ln(−t)

)

X2 = −A
(

1

ǫ
+ 1 − ln(−u)

)

X3 = X5 = 2A

{

(−t)−ǫ
(

1

ǫ
+ 2

)

−
(

M2
h

M2
h − t

)[

1

ǫ
ln

(

−t

M2
h

)

+
1

2
ln2(M2

h) − 1

2
ln2(−t) − π2

2

]

− 1

}

X4 = X6 = 2A

{

(−u)−ǫ
(

1

ǫ
+ 2

)

−
(

M2
h

M2
h − u

)[

1

ǫ
ln

(

−u

M2
h

)

+
1

2
ln2(M2

h) − 1

2
ln2(−u) − π2

2

]

− 1

}

X7 = 2A

{

− 1

ǫ2
+

1

ǫ

[

2M2
h

M2
h − t

ln

(

−t

M2
h

)

+ ln(s)

]

+ F (t)

}

X8 = 2A

{

− 1

ǫ2
+

1

ǫ

[

2M2
h

M2
h − u

ln

(

−u

M2
h

)

+ ln(s)

]

+ F (u)

}

X9 = −2A

[

1

ǫ2
− 1

ǫ
ln(s) +

1

2
ln2(s) + 1 − 2π2

3

]

, (6)

where A is a normalization factor

A =
1

16π2
Γ(1 + ǫ)(4πµ2)ǫ.
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The function F (x) is defined as

F (x) =
−x

M2
h − x

[

− ln2(M2
h) + ln2(−x) + π2

]

+
x

sβh

[

ln

(

M2
h

s

)

ln

(

1 − βh

1 + βh

)

+ 2Li2

(

1 + βh

2

)

− 2Li2

(

1 − βh

2

)]

− 2 ln2

(

−x
√

s

M2
h

)

− 4Li2

(

1 − x

M2
h

)

+
2π2

3
(7)

where βh =
√

1 − 4M2
h/s and Li2 is the dilogarithm or the Spence function [30].

The virtual corrections contain both ultraviolet (UV) and infrared (IR) divergences. In
the MS scheme, the b quark Yukawa coupling is renormalized with the counter term [31]

δmb

mb
= −A

16παs

ǫ
.

This counter term contributes to the total matrix element squared by

|MCT|2 = 2
δmb

mb
|M0

s |2 + 4
δmb

mb

(

|M0
t |2 + |M0

u |2 + 2Re(M0
t M0

u)
)

= −32Aπαs

ǫ

[

|M0
s |2 + 2(|M0

t |2 + |M0
u |2 + 2ReM0

t M0
u)
]

.

Summing over all relevant contributions, we obtain the following expression for the one-
loop virtual corrections

|Mv|2 = 2Re(MloopM0) + |MCT|2

= |M0|2
{

A
64παs

3

[

− 1

ǫ2
+

1

ǫ
ln(s) − 3

2ǫ

]}

+ A
64παs

3
|MD|2 , (8)

where |MD|2 contains the finite terms:

|MD|2 =

[

−1

2
ln2(s) +

2π2

3
− 1

]

|M0
s |2

+
M2

h

M2
h − t

[

− ln2(M2
h) + ln2(−t) + π2

]

|M0
t |2 +

[

F (t) +
3

2
− 3

2
ln(−t)

]

|M0
t |2

+
M2

h

M2
h − u

[

− ln2(M2
h) + ln2(−u) + π2

]

|M0
u |2 +

[

F (u) +
3

2
− 3

2
ln(−u)

]

|M0
u |2

+
M4

h

(M2
h − t)(M2

h − u)

[

ln2(−t) + ln2(−u) + F (t) + F (u)

− 3

2
ln(−t) − 3

2
ln(−u) + 2π2 + 3

]

Re(M0
t M0

u)

+
M2

h

(M2
h − t)(M2

h − u)

{

−s ln2(M2
h) − u ln2(−t) − t ln2(−u)

−
[

F (t) + F (u) − 3

2
ln(−t) − 3

2
ln(−u) + π2 + 3

]

(t + u)
}

Re(M0
t M0

u)

+
tu

(M2
h − t)(M2

h − u)

[

F (t) + F (u) + 3 − 3

2
ln(−t) − 3

2
ln(−u)

]

Re(M0
t M0

u) .(9)

The divergences left in Eq. 8 are infrared divergences which are canceled by the infrared
divergences in the real gluon emission corrections discussed in the next subsection.
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B. Real gluon emission

The Feynman diagrams for real gluon emission (bb̄ → hhg) are shown in Fig. 3. We
assign the momentum as

b(p1)b̄(p2) → h(p3)h(p4)g(pg).

The real gluon emission corrections have infrared (IR) and collinear singularities. The
infrared singularities cancel the virtual infrared singularities in Eq. 8 and the collinear sin-
gularities are absorbed into parton distribution functions. We apply the two cut-off phase
space slicing (PSS) method [21, 22] to isolate these singularities in different regions of phase
space.

We introduce two small cutoffs to split the phase space in the real gluon emission process.
First, we introduce a soft cutoff (δs) to separate the phase space of the process bb̄ → hhg
into soft and hard regions according to the emitted gluon energy. The soft region is the

region where the radiated gluon energy satisfies Eg < δs

√
s

2
, while the hard region is the

region where the gluon energy satisfies, Eg ≥ δs

√
s

2
. Then the contributions from real gluon

emission can be decomposed as

σ̂r = σ̂soft + σ̂hard . (10)

Although the energy of the emitted gluon in the hard region is above the threshold, there
still exist singularities when the emitted gluon is parallel to one of the initial bottom quarks.
We introduce a collinear cutoff (δc) to isolate this collinear singularity. The phase space in
the hard region is decomposed into hard/collinear and hard/non-collinear regions. In the
hard/collinear portion, the gluon is emitted within an angle satisfying

2p1 · pg

Eg

√
s

< δc or
2p2 · pg

Eg

√
s

< δc . (11)

The parton level cross section in the hard region is split into hard/collinear and
hard/noncollinear regions,

σ̂hard = σ̂hard/c + σ̂hard/nc , (12)

where σ̂hard/c is obtained by integrating over the hard/collinear region of the gluon phase
space. It includes the collinear singularities and can be evaluated analytically in N dimen-
sions. The hard non-collinear cross section (σ̂hard/nc) is finite. We have calculated σ̂hard/c

and σ̂hard/nc numerically with a collinear cutoff (δc). The analytic matrix elements squared
are used in our calculations for αs and 1/Λ corrections. Since δs and δc are arbitrary cut-offs,
the dependence of the cross section on δs and δc is not physical and cancels in the total NLO
cross section.

1. Soft gluons

The soft gluon emission amplitudes for the diagrams in Fig. 3 are obtained by setting
the gluon momentum pg to zero everywhere except in the denominators that are singular as
pg → 0. The soft gluon emission corrections are

Msoft = g2
sT

a
ji

(

pµ
2

p2 · pg
− pµ

1

p1 · pg

)

(M̂0
s + M̂0

t + M̂0
u) . (13)
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FIG. 3: Feynman diagrams for Higgs pair production in bottom quark fusion with real gluon

emission (bb̄ → hhg).

There is a logarithmic divergence in the integral of the matrix element squared over
the soft three-body phase space. The three-body phase space in the soft gluon emission
approximation is,

dΦ3|soft =

[

dN−1p3

2E3(2π)N−1

dN−1p4

2E4(2π)N−1
(2π)NδN(p1 + p2 − p3 − p4)

]

dN−1pg

2Eg(2π)N−1

= (dΦ2)(dΦg|soft) (14)

9



where dΦ2 is the two-body phase space factor and dΦg|soft is the soft gluon phase space. In
the center of mass frame of the incoming partons,

dΦg|soft =
dN−1pg

(2π)N−12Eg

=
Γ(1 − ǫ)

Γ(1 − 2ǫ)

πǫ

(2π)3

∫

√
s

2
δs

0
dEgE

1−2ǫ
g

∫ π

0
dθ1sin

1−2ǫθ1

∫ π

0
dθ2sin

−2ǫθ2 . (15)

Together with the matrix element in the corresponding soft approximation, this integral can
be evaluated analytically,

〈|M ′
soft|2〉 ≡

∫

dΦg|soft〈|Msoft|2〉

= 4παs〈|M0|2〉CF
1

4π2ǫ2

(

4πµ2

δ2
ss

)ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)

= 〈|M0|2〉A
64παs

3

[

1

ǫ2
− 1

ǫ
ln(δ2

s ) −
1

ǫ
ln(s) +

1

2
ln2(sδ2

s) −
π2

3

]

. (16)

The divergences in Eq. 16 cancel the IR singularities in Eq. 8 of the virtual corrections.
Adding Eq. 8 and Eq. 16 together we obtain

〈|Mv|2〉 + 〈|M ′
soft|2〉 = 〈|M0|2〉

{

A
64παs

3

(

−1

ǫ

) [

ln(δ2
s) +

3

2

]

+A
64παs

3

[

1

2
ln2(sδ2

s) −
π2

3

]}

+ A
64παs

3
|MD|2 .

(17)

However, this equation still has a collinear singularity, which can be absorbed into the parton
distribution functions. We discuss this collinear singularity in the next subsection.

2. Hard gluons

In the hard/collinear region, the hard gluon is emitted collinearly to one of the initial
partons. The phase space is greatly simplified in the collinear limit. The initial-state b quark
splits into a hard parton b′ and a collinear hard gluon g by b → b′g with approximately
pb′ = zpb and pg = (1 − z)pb. In the hard/collinear limit, the matrix element squared for
bb̄ → hhg factorizes into the Born matrix element squared and the Altarelli-Parisi splitting
function for b → b′g

〈
∑

|Mhard/c|2〉(bb̄ → hhg) → (4παs)〈
∑

|M0|2〉
−2Pbb(z, ǫ)

z(p1 − pg)2
(µ2)ǫ + (1 ↔ 2) , (18)

where Pbb is the Altarelli-Parisi splitting function for b → b′g at the lowest order

Pbb(z, ǫ) = CF

[

1 + z2

1 − z
− ǫ(1 − z)

]

= Pbb(z) + ǫP ′
bb(z) . (19)
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The process can be factorized in two steps. First, one incoming b quark radiates a hard
gluon and becomes b′. Then this b′ collides with another incoming b quark to produce two
Higgs bosons by b′b̄ → hh. The hard/collinear phase space is,

dΦ3 |hard/c= dΦ2(zp1 + p2 → p3 + p4)
dN−1pg

(2π)N−12Eg
. (20)

To carry out the integration over dN−1pg in the collinear approximation, we introduce a new
variable, sbg = 2p1 · pg, which is constrained by 0 ≤ sbg ≤ s

2
(1 − z)δc. The hard/collinear

phase space of the gluon becomes,

dN−1pg

(2π)N−12Eg
|hard/c=

(4π)ǫ

16π2

1

Γ(1 − ǫ)
dzdsbg[(1 − z)sbg]

−ǫ . (21)

The dsbg integral can be evaluated to find the cross section in the hard/collinear region,

σhard/c =
∫

dx1dx2 b̄(x2)
αs

2π

Γ(1 − ǫ)

Γ(1 − 2ǫ)

(

4πµ2

s

)ǫ

(−1

ǫ
)δ−ǫ

c

∫ 1−δs

x1

dz

z
b(x1/z)Pbb(z, ǫ)σ̂LO

×
[

(1 − z)2

2

]−ǫ

+ (b ↔ b̄) + (1 ↔ 2) . (22)

This equation has collinear divergences which we remove by absorbing them into bare
parton distribution functions. We introduce a modified (NLO) parton distribution function
at the factorization scale µF in the MS scheme:

b(x) = b(x, µF )
{

1 +
2αs

3π
(4π)ǫΓ(1 + ǫ)

(

1

ǫ

) [

ln(δ2
s) +

3

2

]}

+
αs

2π

Γ(1 − ǫ)

Γ(1 − 2ǫ)
(4π)ǫ

(

1

ǫ

)
∫ 1−δs

x
Pbb(z)

dz

z
b(x/z) . (23)

Replacing b(x) in the lowest order hadronic cross section by b(x, µF ) and dropping terms
higher than O(αs), we obtain the Born cross section that is proportional to αs

σBorn =
∫

dx1dx2b(x1, µF )b̄(x2, µF )σ̂LO(x1, x2, µR)

+
∫

dx1dx2b(x1, µF )b̄(x2, µF )σ̂LO(x1, x2, µR)
{

4αs

3π
(4π)ǫΓ(1 + ǫ)

(

1

ǫ

) [

ln(δ2
s) +

3

2

]}

+

{

∫

dx1dx2b̄(x2, µF )σ̂LO(x1, x2, µR)
αs

2π

Γ(1 − ǫ)

Γ(1 − 2ǫ)
(4π)ǫ

(

1

ǫ

)

×
∫ 1−δs

x1

Pbb(z)
dz

z
b(x1/z, µF ) + (b ↔ b̄)

}

+(1 ↔ 2) . (24)

The 1/ǫ poles in the second line cancel the collinear singularities of the soft gluon corrections
in Eq. 17, while the divergences in the third line cancel with the hard/collinear divergences
in Eq. 22. These cancellations leave a finite cross section that has dependence on µR and
µF .

The remaining region has hard/non-collinear gluons and yields a finite contribution to
the cross section. We compute this contribution numerically.
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C. Corrections from bg → bhh

Now let us consider the contributions from the parton subprocess bg → bhh, which is an
O(1/Λ) correction to the LO process of bb̄ → hh. In calculating this cross section, again
we ignore the bottom quark mass, mb, except in the Yukawa couplings where the running
mass is used. There are no IR singularities in the bg → bhh subprocess. However, when
we integrate over the momenta of the b quarks, there are initial state collinear singularities
which arise from gluon splitting to a pair of collinear b quarks. These singularities are
absorbed into gluon parton distribution functions.

h  b

 b b

h

 b

 b

h

h

 b

hh

 b

h

h

 b

g

hg

g

g

g

 b

 b

(3)

(1)

 b

h

(2)

 b h

 b

(8)(7)

(4)

h

 b

 b

h

h

 b h

 b

h

 b

 b

(6)

 b

 

(5)

g

g g

h

 b

 b

FIG. 4: The lowest order Feynman diagrams for bg → bhh.

The eight diagrams for the bg → bhh subprocess are shown in Fig. 4. We assign momenta
to partons as

b(p1)g(p2) → b(pb)h(p3)h(p4) .
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As there are no IR divergences, we do not need to separate the final b quark phase space
into soft and hard regions. The cross section is:

σbg =
∫

dx1dx2b(x1)g(x2)σ̂(bg → bhh) + (1 ↔ 2) . (25)

As shown in diagrams (1), (2) and (7) of Fig. 4, the initial gluon can be considered to split
into two b quarks. When these two b quarks are parallel to each other, collinear singularities
appear. To remove these collinear singularities, we introduce a collinear cutoff (δc) to split
the final b quark phase space into collinear and non-collinear regions. In the collinear region,
the final b is emitted within an angle satisfying,

−(p2 − pb)
2

Eb

√
s

< δc . (26)

Using the same method as for the bb̄ → hhg real gluon emission corrections, we find the
cross section in the collinear region:

σc =
∫

dx1dx2 b(x1)σ̂
αs

2π

Γ(1 − ǫ)

Γ(1 − 2ǫ)

(

4πµ2

s

)ǫ

(−1

ǫ
)δ−ǫ

c

×
∫ 1

x2

dz

z
g(x2/z)Pbg(z, ǫ)

[

(1 − z)2

2z

]−ǫ

. (27)

Pbg is the Altarelli-Parisi splitting function for g → bb′ at lowest order,

Pbg(z, ǫ) =
1

2

[

z2 + (1 − z)2
]

− ǫz(1 − z)

= Pbg(z) + ǫP ′
bg(z) . (28)

Again we introduce a modified parton distribution function,

g(x, µF ) = g(x) +
αs

2π

Γ(1 − ǫ)

Γ(1 − 2ǫ)
(4π)ǫ

(

−1

ǫ

)
∫ 1

x
Pbg(z)

dz

z
g(x/z) (29)

The contribution to the NLO total cross section from the bg initial state is then,

δσbg
NLO = σc + σnc

=
αs

2π

∫

dx1dx2

∫ 1

x2

dz

z
σ̂LO b(x1, µF )g(x2/z, µF )

×
[

z2 + (1 − z)2

2
ln

(

s

µ2

(1 − z)2

z

δc

2

)

+ z(1 − z)

]

+
∫

dx1dx2 b(x1, µF )g(x2, µF )σ̂nc(bg → bhh) + (1 ↔ 2) . (30)

Here σ̂LO is the Born cross section for bb̄ → hh and σ̂nc is the Born cross section for bg → bhh.
The b̄g → b̄hh process has exactly the same contribution as bg → bhh.
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D. Next-to-leading order cross section for bb̄ → hh

We have obtained the virtual and the real gluon emission O(αs) corrections to bb̄ → hh.
The real gluon emission corrections include three regions: soft, hard/collinear and hard/non-
collinear. The total next-to-leading order cross section can now be assembled from the lowest
order cross section, the virtual corrections, and the real gluon emission corrections. Summing
all of the above pieces, we obtain the O(αs) next-to-leading-order cross section corrections,

σBorn + δσαs
= σBorn + σv + σsoft + σhard/c + σhard/nc

=
∫

dx1dx2 b(x1, µ)b̄(x2, µ)
{

σ̂LO

[

1 − 4αs

3π
ln(µ2)

(

ln(δ2
s) +

3

2

)]

+ σ̂finite

}

+
αs

2π
CF

∫

dx1dx2

∫ 1−δs

x1

dz

z
σ̂LO

[

b(x1/z, µ)b̄(x2, µ) + b(x2, µ)b̄(x1/z, µ)
]

×
[

1 + z2

1 − z
ln

(

s

µ2

(1 − z)2

z

δc

2

)

+ 1 − z

]

+
∫

dx1dx2 b(x1, µ)b̄(x2, µ)σ̂hard/nc(bb̄ → hhg)

+(1 ↔ 2) (31)

where σ̂finite represents the finite cross section with contributions from both virtual and soft
gluon radiative corrections,

σ̂finite =
∫

1

2s

1

2

4αs

3π

{[

1

2
ln2(sδ2

s) −
π2

3

]

|M0|2 + |MD|2
}

dΦ2(bb̄ → hh) . (32)

We have taken µ = µR = µF .
The O(1/Λ) corrections from the subprocesses bg → bhh and b̄g → b̄hh include collinear

and non-collinear contributions and yield the 1/Λ corrections for Higgs pair production
associated with one b quark.

δσ1/Λ = δσbg
NLO + δσb̄g

NLO

(33)

Summing Eq. 31 and 33, we get the total next-to-leading-order cross section for Higgs pair
production from bottom quark fusion,

σNLO = σBorn + δσαs
+ δσ1/Λ . (34)

The associated Higgs boson pair production with bb̄ occurs via gluon fusion gg → bb̄hh
and quark-antiquark annihilation qq̄ → bb̄hh. These are subleading corrections to the NLO
results given above. To estimate the cross section from these subprocesses, we have applied
a nonzero value of mb = 4.7 GeV for the bottom quark mass except in the Yukawa couplings
where the running mass is used. We use MadGraph [23] and HELAS [24] to calculate the
cross sections for these processes and find that the contribution from qq̄ → bb̄hh is much
smaller than that from gg → bb̄hh.
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IV. RESULTS FOR HIGGS PAIR PRODUCTION IN BOTTOM QUARK FUSION

In this section, we present our results for the next-to-leading-order inclusive cross section
for pp → hh + X via bottom quark fusion, bb̄ → hh. We use the lowest order CTEQ6L1
parton distribution functions (PDFs) [32] at the factorization scale µF with the leading-
order evolution of the strong coupling αs(µR) at the renormalization scale µR to calculate
the LO cross section and the CTEQ6M PDFs at µF with the next-to-leading-order evolution
of αs(µR) to evaluate the NLO inclusive cross section.
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σ
hard/nc

δσαs

σBorn + δσαs

δs

FIG. 5: Order αs corrections δσαs
(bb̄ → hh) (dash-dot, blue) versus the soft cutoff δs with

√
S =

14 TeV, µR = µF = Mh/2 and δc = δs/10 for (a) Mh = 120 GeV and (b) Mh = 200 GeV. These

corrections have contributions from virtual gluons (σv), soft gluon emission (σs), hard/collinear

gluon emission (σhard/c), and hard/non-collinear gluon emission (σhard/nc). These graphs show the

cancellation of the δs dependence between σv + σs + σhard/c (dash, magenta) and σhard/nc (dot,

green). Also shown is the sum of σBorn and δσαs
(solid, red).

We have introduced two arbitrary small cutoffs, the soft cutoff δs and the collinear cutoff
δc, to split the phase space in the real gluon emission corrections into soft, hard/collinear
and hard/non-collinear regions. These separations are not physical and our final results are
reliable only if they are not sensitive to these parameters.

To check the dependence of the O(αs) NLO cross section on these two parameters, we
present the order αs corrections for Higgs pair production δσαs

(bb̄ → hh) versus δs in Fig. 5
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FIG. 6: Order αs corrections δσαs
(bb̄ → hh) (dash-dot, blue) versus the hard/collinear cutoff

δc with
√

S = 14 TeV, µR = µF = Mh/2 and δs = 10δc for (a) Mh = 120 GeV and (b) Mh =

200 GeV. These corrections have contributions from virtual gluons (σv), soft gluon emission (σs),

hard/collinear gluon emission (σhard/c), and hard/non-collinear gluon emission (σhard/nc). These

graphs show the cancellation of the δc dependence between σv + σs + σhard/c (dash, magenta) and

σhard/nc (dot, green). Also shown is the sum of σBorn and δσαs
(solid, red).

and δσαs
(bb̄ → hh) versus δc in Fig. 6 with

√
S = 14 TeV for (a) Mh = 120 GeV and (b)

Mh = 200 GeV. These corrections have contributions from virtual gluons (σv), soft gluon
emission (σs), hard/collinear gluon emission (σhard/c), and hard/non-collinear gluon emission
(σhard/nc). These graphs show the cancellation of the δs dependence and the δc dependence
between σv + σs + σhard/c and σhard/nc. Also shown is the sum of σBorn and δσαs

. We have
chosen δc = δs/10 and the renormalization/factorization scales to be µF = µR = Mh/2.

There are several points to note.

• We divide the phase space of the real gluon emission correction into soft, hard/collinear
and hard/non-collinear regions by introducing two small cut-offs δs and δc. The cor-
rection in each region is then integrated over the corresponding phase space. As we
can see in these graphs, the corrections in each region are very sensitive to the values
of δs and δc.

• Since these two small cutoffs, δs and δc, are arbitrary, the total cross section should

16



not depend on either one of them. These two figures show the cancellation of the δs

and δc dependences.

• At the renormalization/factorization scale µR = µF = Mh/2, the O(αs) NLO cross
section corrections are comparable with the Born cross section. This implies that the
O(αs) corrections significantly increase the LO cross section.
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FIG. 7: Order 1/Λ corrections δσ(1/Λ)(bg → bhh) (dash-dot, blue) versus the collinear cutoff

δc with
√

S = 14 TeV and µR = µF = Mh/2 for (a) Mh = 120 GeV and (b) Mh = 200 GeV.

This figure shows the cancellation of the δc dependence between σc (dash, magenta) and σnc (dot,

green). Also shown is the sum of σBorn and δσ1/Λ (solid, red).

Figure 7 shows the independence of order 1/Λ corrections (δσ1/Λ) on the collinear cutoff
δc in the bg → bhh subprocess. Like the αs corrections to bb̄ → hh, the contributions from
collinear and non-collinear regions are very sensitive to the values of δc, but the total O(1/Λ)
NLO cross section correction is independent of δc. The O(1/Λ) contributions from bg → bhh
are much smaller than the O(αs) NLO corrections from the bb̄ initial state.

In Fig. 8, we study the dependence of the LO and NLO cross sections on the renor-
malization and factorization scales. We present the next-to-leading order cross section
σNLO(pp → hh + X) via bottom quark fusion versus µ = µR = µF with δs = 10−3

and δc = 10−4 for (a) Mh = 120 GeV and (b) Mh = 200 GeV. Also shown are the LO

17



FIG. 8: Next-to-leading order cross section σNLO(pp → hh + X) (solid, black) in bottom quark

fusion versus renormalization/factorization scale µ = µR = µF with
√

S = 14 TeV, δs = 10−3 and

δc = 10−4, for (a) Mh = 120 GeV and (b) Mh = 200 GeV. Also shown are the LO cross section σLO

(dash-dot-dot, green), αs corrections δσαs
(dash-dot, blue), 1/Λ corrections δσ1/Λ (dot, magenta),

and the NLO correction δσNLO = δσαs
+ δσ1/Λ (dash, red).

cross section (σLO), αs corrections (δσαs
), 1/Λ corrections (δσ1/Λ), and the NLO correction

δσNLO = δσαs
+ δσ1/Λ.

We note that:

• The total NLO cross section corrections decrease with µ. The larger the Higgs mass,
the slower the decrease of the NLO corrections.

• The NLO cross section has less dependence on the renormalization and factorization
scales than does the LO cross section.

Fig. 9 shows the NLO total cross section pp → hh + X in bottom quark fusion as a
function of the Higgs mass (Mh) at the LHC with

√
S = 14 TeV, δs = 10−3 and δc = 10−4.

The renormalization and factorization scales are chosen to be (a) µ = Mh and (b) µ = Mh/2.
The NLO cross section correction for µ = Mh is bigger than for µ = Mh/2. In addition, we
present the LO cross section (σLO), αs corrections (δσαs

), 1/Λ corrections (δσ1/Λ), and the
NLO correction δσNLO = δσαs

+ δσ1/Λ.

18



FIG. 9: Next-to-leading order cross section σNLO(pp → hh + X) (solid, black) in bottom quark

fusion versus the Higgs mass (Mh) with
√

S = 14 TeV, δs = 10−3 and δc = 10−4, for (a) µR =

µF = Mh and (b) µR = µF = Mh/2. Also shown are the LO cross section σLO (dash-dot-dot,

green), αs corrections δσαs
(dash-dot, blue), 1/Λ corrections δσ1/Λ (dot, magenta), and the NLO

correction δσNLO = δσαs
+ δσ1/Λ (dash, red).

In Fig. 10, we show the LO and the NLO cross section including the O(αs) contributions
from the bb initial state and the O(1/Λ) contribution from the bg initial state. We sepa-
rately show the O(1/Λ2) contribution via gg → bb̄hh as a function of the Higgs mass (Mh)
at the LHC with

√
s = 14 TeV. As in Fig. 9, we present our results at two renormaliza-

tion/factorization scales, (a) µ = Mh and (b) µ = Mh/2 with δs = 10−3 and δc = 10−4.
In calculating the sub-leading contribution from the subprocess gg → bb̄hh, we have

evaluated the cross section numerically for pp → bb̄hh + X via gg → bb̄hh with a finite
quark mass to regulate the collinear singularity. We take the b quark mass to be mb = 4.7
GeV.

As is shown in Fig. 10, both the LO and NLO total cross section for the bb → hh process
at a renormalization/factorization scale Mh are bigger than the corresponding cross sections
at the scale Mh/2.

In the Standard Model, gluon fusion is the dominant source for producing a pair of Higgs
bosons through triangle and box diagrams containing top and bottom quark loops. It has
been demonstrated that it might be possible to study the trilinear Higgs coupling at the
LHC through the gluon fusion production mechanism of Higgs boson pairs [5, 6, 7, 8, 9]. In
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FIG. 10: Leading order cross section σLO (dash, blue) and next-to-leading order cross section σNLO

(solid, red) for pp → hh+X via bottom quark fusion as a function of Mh at the LHC with
√

S = 14

TeV for (a) µ = Mh and (b) µ = Mh/2. Also shown is the O(1/Λ2) contribution from gg → bb̄hh.

the minimal supersymmetric standard model, bottom quark fusion could offer great promise
to study the trilinear couplings of Higgs bosons for large values of tanβ through bb → hh.

In Figure 11, we show the cross section for pp → hh + X via gluon fusion (gg → hh)

through top and bottom loop diagrams as a function of Mh at LHC with
√

S = 14 TeV for
(a) µ = Mh and (b) µ = Mh/2. In the SM this production mechanism is significantly larger
than the bb fusion mechanism.

V. CONCLUSIONS

In this paper we present complete O(αs) and O(1/Λ) QCD corrections to the production
of a pair of Higgs bosons via bottom quark fusion at the LHC. We introduce two arbitrary
small cutoffs, δs and δc, to compute O(αs) NLO soft, hard/collinear and hard/non-collinear
gluon emission corrections to bb̄ → hh. The total O(αs) NLO cross section corrections are
independent of the values of δs and δc.

Our results are not sensitive to the difference between renormalization and factorization
scales and we use the same renormalization and factorization scales. The LO cross section
is very sensitive to the factorization scale. The cross section for the bb̄ → hh process with
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FIG. 11: Cross section of pp → hh + X via gluon fusion versus the Higgs mass (Mh) at LHC with√
S = 14 TeV for the contributions from the triangle diagrams (dash, blue) and the box diagrams

(dot, green) respectively. Also shown is the total cross section (solid). The renormalization and

factorization scales are chosen to be (a) µR = µF = Mh and (b) µR = µF = Mh/2.

large factorization scale is larger than the corresponding cross section with a low factorization
scale.

The rate for double Higgs production in the SM is very small, although the NLO cor-
rections we have computed significantly increase this rate. However, the rate for Higgs pair
production will be enhanced in models with large couplings of the Higgs bosons to b quarks.
Our results are of interest in attempts to measure the trilinear Higgs coupling in such models.
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APPENDIX A: HEAVY QUARK RUNNING MASS

The two-loop running mass of a heavy quark in the MS scheme has the expression [17, 25]

m̄(µ) = m̄(µ0)

(

αs(µ)

αs(µ0)

)γ0/β0

[

1 + a1
αs(µ)

π
+ (a2

1 + a2)/2
(

αs(µ)
π

)2
]

[

1 + a1
αs(µ)

π
+ (a2

1 + a2)/2
(

αs(µ)
π

)2
] (A1)

where

a1 = −β1γ0

β2
0

+
γ1

β0

a2 =
γ0

β2
0

(

β2
1

β0

− β2

)

− β1γ1

β2
0

+
γ2

β0

γ0 = 1

γ1 =
1

16

(

202

3
− 20

9
Nf

)

γ2 =
1

64

[

1249 +
(

−2216

27
− 160

3
ζ3

)

Nf − 140

81
N2

f

]

β0 =
1

4

(

11 − 2

3
Nf

)

β1 =
1

16

(

102 − 38

3
Nf

)

(A2)

where Nf is the number of quark flavors with mass less than µ(µ > µ0), and ζ is the Riemann
zeta function with ζ3 = 1.2020569.

The MS mass at next-leading order is

MQ = m̄(MQ)
(

1 + CF
αs

π

)

(A3)

Here MQ is the heavy quark pole mass. The evolution of the strong coupling can be
found in Ref. [26].
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